Skip to main content
Log in

Late pleistocene sedimentation history of the Shirshov Ridge, Bering Sea

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The analysis of the lithology, grain-size distribution, clay minerals, and geochemistry of Upper Pleistocene sediments from the submarine Shirshov Ridge (Bering Sea) showed that the main source area was the Yukon-Tanana terrane of Central Alaska. The sedimentary materials were transported by the Yukon River through Beringia up to the shelf break, where they were entrained by a strong northwestward-flowing sea current. The lithological data revealed several pulses of ice-rafted debris deposition, roughly synchronous with Heinrich events, and periods of weaker bottom-current intensity. Based on the geochemical results, we distinguished intervals of an increase in paleoproductivity and extension of the oxygen minimum zone. The results suggest that there were three stages of deposition driven by glacioeustatic sea-level fluctuations and glacial cycles in Alaska.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Lisitsin, Recent Sedimentation in the Bering Sea (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  2. A. N. Sukhov, V. D. Chekhovich, A. V. Lander, S. L. Presnyakov, and E. N. Lepekhina, “Age of the Shirshov Submarine Ridge Basement (Bering Sea) Based on the Results of Investigation of Zircons Using the U-Pb SHRIMP Method,” Dokl. Earth Sci. 439(2), 926–932 (2011).

    Article  Google Scholar 

  3. M. A. Levitan, Yu. A. Lavrushin, and R. Stein, Reviews of the Sedimentation History in the Arctic Ocean and Subarctic Region for the Last 130 kyr (GEOS, Moscow, 2007) [in Russian].

    Google Scholar 

  4. S. A. Gorbarenko, N. Harada, M. I. Malakhov, Y. P. Vasilenko, A. A. Bosin, and E. L. Goldberg, “Orbital and Millennial-Scale Environmental and Sedimentological Changes in the Okhotsk Sea during the Last 350 kyr,” Glob. Planet. Change 72, 79–85 (2010).

    Article  Google Scholar 

  5. E. Sakshaug, “Primary and Secondary Production in the Arctic Seas,” in The Arctic Ocean Organic Carbon Cycle: Present and Past, Ed. by R. Stein and R. W. MacDonald (Springer, Berlin, 2004), pp. 57–82.

    Chapter  Google Scholar 

  6. SO201-KALMAR Leg 2 Cruise Report, Ed. by C. Dullo, B. Baranov, and C. van den Bogaard (IFM-GEOMAR, Kiel, 2009).

    Google Scholar 

  7. S. Gorbarenko, “Stable Isotope and Lithological Evidence of Late-Glacial and Holocene Oceanography of the Northwestern Pacific and Its Marginal Seas,” Quat. Res. 46, 230–250 (1996).

    Article  Google Scholar 

  8. M. Cherepanova, S. Gorbarenko, M. Malakhov, and D. Nürnberg, “Diatom Stratigraphy and Paleogeography of the Western Bering Sea over the Past 170 ka,” in KALMAR Workshop Program and Abstracts, (IFMGEOMAR, Trier, 2011), pp. 31–32.

    Google Scholar 

  9. M. Malakhov, S. Gorbarenko, D. Nürnberg, R. Tiedemann, G. Malakhova, and J.-R. Riethdorf, “Geomagnetic Relative Paleointensity of Sediment Cores of the Western Bering Sea and NW Pacific,” in KALMAR Workshop Program and Abstracts (IFM-GEOMAR, Trier, 2011), p. 83.

    Google Scholar 

  10. E. Ovsepyan, E. Ivanova, I. Murdmaa, T. Alekseeva, and A. Bosin, “Glacial-Interglacial Environmental Changes on the Shirshov Ridge, Western Bering Sea: Micropaleontological and Sedimentary Records from Core SO 201-2-85 KL,” in KALMAR Workshop Program and Abstracts (IFM-GEOMAR, Trier, 2011), pp. 89–91.

    Google Scholar 

  11. J.-R. Riethdorf, “Late Pleistocene to Holocene Changes in Upper-Ocean Stratification and Its Impact on Marine Productivity, Sea Surface Temperatures, and Salinity in the Subarctic Northwest Pacific,” Ph. D. Thesis. (GEOMAR, Kiel, 2012).

    Google Scholar 

  12. P. Biscaye, “Mineralogy and Sedimentation of Recent Deep-Sea Clay in the Atlantic Ocean and Adjacent Seas and Oceans,” Geol. Soc. Am. Bull. 76, 803–832 (1965).

    Article  Google Scholar 

  13. M. A. Levitan, I. A. Roshchina, and A. V. Tolmacheva, “Geochemical Features of Sediments on the Continental Slope of the Weddell Sea and Their Paleoceanographic Interpretation,” Lithol. Miner. Resour. 43(2), 111–124 (2008).

    Article  Google Scholar 

  14. M. A. Levitan, I. A. Roshchina, V. Yu. Rusakov, K. V. Syromyatnikov, and R. Spielhagen, “Quaternary History of Sedimentation on the Submarine Lomonosov Ridge, North Arctic Ocean,” in Structure and Evolution of the Lithosphere, Ed. by Yu. G. Leonov (Paulsen Editions, Moscow-St. Petersburg, 2010), pp. 464–490 [in Russian].

    Google Scholar 

  15. M. A. Levitan, I. A. Roshchina, V. Yu. Rusakov, K. V. Syromyatnikov, and R. Spielhagen, “History of Sedimentation on the Submarine Continental Margin of the Kara Sea over the Last 190 ka,” in Geology and Geoecology of the Eurasian Continental Margins, Ed. by Yu.A. Lavrushin (GEOS, Moscow, 2010), Vol. 2, pp. 174–198 [in Russian].

    Google Scholar 

  16. V. G. Shlykov, X-Ray Analysis of Mineral Composition of Dispersed Sois (GEOS, Moscow, 2006) [in Russian].

    Google Scholar 

  17. D. A. Darby, A. S. Naidu, T. C. Mowatt, and G. A. Jones, “Sediment Composition and Sediment Processes in the Arctic Ocean,” in The Arctic Seas: Climatology, Oceanography, Geology, and Biology, Ed. by Y. Herman (VanNostrand Reinhold, New York, 1989), pp. 657–720.

    Google Scholar 

  18. F. C. Moser and J. R. Hein, “Distribution of Clay Minerals in the Suspended and Bottom Sediments from the Northern Bering Sea Shelf Area,” US Geol. Surv. Bull., No. 1624 (2008).

    Google Scholar 

  19. C. Müller, “Rekonstruktion der Palao-Umweltbedingungen am Laptev-See-Kontinentalrand wahrend der beiden letzten Glazial/Interglazial-Zyclen anhand sedimentologischer und mineralogischer Untersuchungen,” Ber. Polarforsch., No. 328 (1999).

    Google Scholar 

  20. C. Sancetta, L. Heusser, L. Labeyrie, S. A. Naidu, and S.W. Robinson, “Wisconsin-Holocene Paleoenvironment of the Bering Sea: Evidence from Diatoms, Pollen, Oxygen Isotopes and Clay Minerals,” Mar. Geol. 62, 55–68 (1985).

    Article  Google Scholar 

  21. H. Champley, Clay Sedimentology (Springer, New York-Berlin, 1989).

    Google Scholar 

  22. C. Dusel-Bacon, “Metamorphic History of Alaska,” in The Geology of Alaska, Ed. by G. Plafker and H. C. Berg (Geol. Soc. Am., Boulder, 1994), pp. 495–534.

    Google Scholar 

  23. E. J. Moll-Stalcup, “Latest Cretaceous and Cenozoic Magmatism in Mainland Alaska,” in The Geology of Alaska, Ed. by G. Plafker and H. C. Berg (Geol. Soc. Am., Boulder, 1994), pp. 589–620.

    Google Scholar 

  24. H. L. Foster, T. E. C. Keith, and W. D. Menzie, “Geology of the Yukon-Tanana Area of East Central Alaska,” in The Geology of Alaska, Ed. by G. Plafker and H. C. Berg (Geol. Soc. Am., Boulder, 1994), pp. 205–240.

    Google Scholar 

  25. A. B. Ronov, A. A. Yaroshevskii, and A. A. Migdisov, Chemical Structure of the Earth’s Crust and Geochemical Balance of Major Elements (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  26. The Geology of Alaska, Ed. by G. Plafker and H. C. Berg (Geol. Soc. Am., Boulder, 1994).

    Google Scholar 

  27. Th. E. Moore, W. K. Wallace, K. J. Bird, S. M. Karl, Ch. G. Mull, and J. T. Dillon, “Geology of Northern Alaska,” in The Geology of Alaska, Ed. by G. Plafker and H. C. Berg (Geol. Soc. Am., Boulder, 1994), pp. 49–140.

    Google Scholar 

  28. M. A. Levitan, M. V. Bourtman, L. L. Demina, V. V. Krupskaya, E. M. Sedykh, and M. Yu. Chudetskii, “History of Holocene Sedimentation in the Southern Kara Sea,” Lithol. Miner. Resour. 39(6), 566–579 (2004).

    Article  Google Scholar 

  29. D. Gallego-Torres, F. Martinez-Ruiz, A. Paytan, F. J. Jimenez-Espejo, and M. Ortega-Huertas, “Pliocene-Holocene Evolution of Depositional Conditions in the Eastern Mediterranean: Role of Anoxia Vs. Productivity at Time of Sapropel Deposition,” Palaeogeography, Palaeoclimatology, Palaeoecology 209, 424–439 (2004).

    Google Scholar 

  30. S. Van Laningham, N. G. Pisias, R. A. Duncan, and P. D. Clift, “Glacial-Interglacial Sediment Transport to the Meiji Drift, Northwest Pacific Ocean: Evidence for Timing of Beringian Outwashing,” Earth Planet. Sci. Lett. 277, 64–72 (2009).

    Article  Google Scholar 

  31. M. Sarnthein, K. Stattegger, D. Dreger, H. Erlenkeuser, P. Grootes, B. J. Haupt, S. Jung, T. Kiefer, W. Kuhnt, U. Pflaumann, C. Schafer-Neth, H. Schulz, M. Schulz, D. Seidov, J. Simstich, S. van Kreveld, E. Vogelsang, A. Volker, and M. Weinelt, “Fundamental Models and Abrupt Changes in North Atlantic Circulation and Climate over the Last 60 ky-Concepts, Reconstruction, and Numerical Modeling,” in The Northern North Atlantic: A Changing Environment (Springer, Berlin, 2001), pp. 365–410.

    Chapter  Google Scholar 

  32. M. A. Levitan and Yu. A. Lavrushin, Sedimentation History in the Arctic Ocean and Subarctic Seas for the Last 130 kyr (Springer, Berlin, 2009).

    Book  Google Scholar 

  33. B. J. L. Jensen, D. G. Froese, S. J. Preece, J. A. Westgate, and T. Stachel, “An Extensive Middle to Late Pleistocene Tephrochronological Record from East-Central Alaska,” Quat. Sci. Rev. 27, 411–427 (2008).

    Article  Google Scholar 

  34. D. M. Hopkins, “Aspects of the Paleogeography of Beringia during the Late Pleistocene,” in Paleoecology of Beringia (Academic Press, New York, 1982), pp. 3–28.

    Google Scholar 

  35. G. R. Bigg, C. D. Clark, and A. L. C. Hughes, “A Last Glaciation Sheet on the Pacific Russian Coast and Catastrophic Change Arising from Coupled Ice-Volcanic Interaction,” Earth Planet. Sci. Lett. 265, 559–570 (2008).

    Article  Google Scholar 

  36. T. D. Hamilton, “Late Cenozoic Glaciation of Alaska,” in The Geology of Alaska, Ed. by G. Plafker and H. C. Berg (Geol. Soc. Am., Boulder, 1994), pp. 813–844.

    Google Scholar 

  37. V. S. Pushkar and M. V. Cherepanova, “Beringia: Impact of Paleoclimates of Northeast Asia and North Pacific during Last Pleistocene Glaciation,” Quat. Int. 237, 32–38 (2011).

    Article  Google Scholar 

  38. D. S. Kaufman and W. F. Manley, “Pleistocene Maximum and Late Wiskonsian Glacier Extends across Alaska, USA,” in Quaternary Glaciations—Extent and Chronology, Ed. by J. Ehlers and P. L. Gibbard (Elsevier, Amsterdam, 2004), pp. 9–27.

    Google Scholar 

  39. J. Brigham-Grette, L. M. Gualtieri, O. Yu. Glushkova, T. D. Hamilton, D. Mostoller, and A. Kotov, “Chlorine-36 and 14C Chronology Support a Limited Last Glacial Maximum across Chukotka, North-Eastern Siberia, and No Beringian Ice Sheet,” Quat. Res. 59, 386–398 (2003).

    Article  Google Scholar 

  40. G. Stauch and L. Gualtieri, “Late Quaternary Glaciations in Northeastern Russia,” J. Quat. Sci. 23, 545–558 (2008).

    Article  Google Scholar 

  41. H. J. Knebel and J. S. Creager, “Yukon River: Evidence for Extensive Migration during the Holocene Transgression,” Science 179, 1230–1232 (1973).

    Article  Google Scholar 

  42. H. Bauch, H. Kassens, H. Erlenkeuser, P. M. Grootes, and J. Thiede, “Depositional Environment of the Laptev Sea (Arctic Siberia) during the Holocene,” Boreas 28, 194–204 (1999).

    Article  Google Scholar 

  43. S. A. Gorbarenko, J. R. Southon, L. D. Keigwin, M. V. Cherepanova, and I. G. Gvozdeva, “Late Pleistocene-Holocene Oceanographic Variability in the Okhotsk Sea: Geochemical, Lithological and Paleontological Evidence,” Palaeogeography, Palaeoclimatology, Palaeoecology 209, 281–301 (2004).

    Article  Google Scholar 

  44. G. D. Sharma, The Alaskan Shelf. Hydrographic, Sedimentary and Geochemical Environment (Springer-Verlag, New York-Heidelberg-Berlin, 1979).

    Book  Google Scholar 

  45. A. Hu, G. A. Meehl, B. L. Otto-Bliesner, C. Waelbroeck, W. Han, M. -F. Loutre, K. Lambeck, J. X. Mitrovica, and N. Rosenbloom, “Influence of Bering Strait Flow and North Atlantic Circulation on Glacial-Sea Level Changes,” Nature Geosci. 3, 118–121 (2010).

    Article  Google Scholar 

  46. P. J. Stabeno and R. K. Reed, “Circulation in the Bering Sea Observed by Satellite-Tracked Drifters: 1986–1993,” J. Phys. Oceanogr. 24(4), 840–854 (1994).

    Article  Google Scholar 

  47. Ya. E. Yudovich and M. P. Ketris, Principles of Lithochemistry (Nauka, St. Petersburg, 2000) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Levitan.

Additional information

Original Russian Text © M.A. Levitan, T.G. Kuzmina, V.L. Luksha, I.A. Roshchina, K.V. Syromyatnikov, L. Max, D. Nuernberg, J.-R. Riethdorf, R. Tiedemann, 2013, published in Geokhimiya, 2013, Vol. 51, No. 3, pp. 195–228.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levitan, M.A., Kuzmina, T.G., Luksha, V.L. et al. Late pleistocene sedimentation history of the Shirshov Ridge, Bering Sea. Geochem. Int. 51, 173–204 (2013). https://doi.org/10.1134/S0016702913030051

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702913030051

Keywords

Navigation